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Abstract

Consider a complex large-scale control system which is composed of many spa-
tially distributed subsystems. Each subsystem interacts with some other subsystems
by their states and/or inputs, e.g. large-scale chemical process, smart grid, distributed
generation systems. The control objective is to achieve a specific global performance
of the entire system or a common goal of all subsystems.

To control this class of system, the Distributed Model Predictive Control (DMPC),
which controls each subsystem by a separate local Model Predictive Control (MPC),
has become more and more popular since it not only inherits MPC’s ability to ex-
plicitly accommodate constraints but also possesses the advantages of the distributed
framework of good flexibility and good error tolerance. On the other hand, with the he
development of communication network technologies in process industries, which al-
low a distributed controller to access and send information throughout the system, also
helps to promote distributed control solutions. However, as point in many articles, the
performance of a DMPC is, in most cases, not as good as that of a centralized MPC.

The flexibility (or error tolerance) and global performance is two important charac-
teristics of a DMPC. To improve the optimization performance, the existing methods
usually increase the coordination degree (the range of cost that each subsystem-based
MPC minimized). With the increasing of the coordination degree, the performance
of entire system becomes better and better. However, with the increasing of the co-
ordination degree, the network connectivity become more and more complicity, and
consequently the error tolerance and high flexibility become weaker and weaker. It is
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not expected. Can we find a method which could improve the global performance or
coordination degree without any increasing of network connectivity?

In this Chapter, a novel coordination strategy, where each subsystem-based mod-
el predictive control (MPC) added a quadratic function of the affection of the current
subsystems input to its down-stream neighbors into its optimization index, is proposed
for improving the optimization performance of entire system. This method is able
to increase the coordination degree without any increasing of network connections
comparing to the methods which do not use this coordination strategy. The consisten-
cy constraints, which limit the error between the state predicted at the previous time
instant, referred to as the presumed state, and the state predicted at the current time in-
stant within a prescribed bound, are designed and included in the optimization problem
of each subsystem-based MPC. These constraints guarantee the recursive feasibility of
each subsystem-based MPC. In the meantime, a stabilization constraint and the dual
mode predictive control strategy are adopted to result in a stabilizing DMPC.

1. Introduction

Consider a complex large-scale control system which is composed of many physically or
geographically divided subsystems. Each subsystem interacts with some other subsystems
by their states and/or inputs, e.g. large-scale chemical process [7], smart grid [8], distributed
generation systems. The control objective is to achieve a specific global performance of the
entire system or a common goal of all subsystems.

In controlling such a large-scale system, the distributed (or decentralized) framework,
where each subsystem is controlled by an independent controller, is usually adopted despite
the resulting global performance is in general not as good as a centralized solution [28,
27, 14] for several reasons. The classical centralized control solution is often impractical
because of its heavy computational demand and its lack of tolerance to faults in controller.
The integrity of the control system cannot be maintained when a control component fails
and the whole system is out of control when the centralized controller fails. The distributed
framework, in contrast, has the advantages of fault-tolerance, less computation and being
flexible to system structure. In the mean time, the development of communication network
technologies in process industries, which allows a distributed controller to access and send
information throughout the system, also helps to promote distributed control solutions [32].

Among the distributed solutions, the Distributed Model Predictive Control (DMPC),
which controls each subsystem by a separate local Model Predictive Control (MPC), has
become more and more popular [25, 7] since it not only inherits MPC’s ability to explicitly
accommodate constraints [24, 19, 17, 30, 35] but also possesses the advantages of the dis-
tributed framework mentioned above. However as pointed in [4, 28], the performance of a
DMPC is, in most cases, not as good as that of a centralized MPC.

Many algorithms have appeared in the literature for different type of systems and for
different problems in the design of DMPC, e.g. design of DMPC for nonlinear systems
[2, 12], design DMPC for networked systems with time delay [18, 36], development of
decentralized optimization algorithm for DMPC [6], and design cooperative strategy for
improving performance of DMPC [33, 9], as well as the design of control structure of DM-
PC [1]. Among them, several coordination strategies have appeared to improve the global
performance of the DMPC, and can be classified according to the information exchange
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protocol needed (i.e non-iterative or iterative algorithms), and to the type of cost function
which is optimized [25]. The DMPCs, which accommodate same kind of cost function
for each subsystem-based MPC, can be solved either by iterative algorithm or non-iterative
algorithm. Thus the coordination strategies are introduced by the classification of the type
of cost function which is optimized in each subsystem-based MPC. The simplest and most
adopted strategy is that each local controller minimizes its own subsystem’s cost and uses
the state prediction of the previous time instant to approximate the state sequence at the cur-
rent time instant in computing the optimal solution [4, 15, 10]. In this kind of method, each
subsystem based controller should communicate with its neighbors. Another commonly
used coordination strategy is that each subsystem-based MPC optimizes the cost of overall
system to improve the global performance [28, 26, 33, 9, 31]. In computing the optimal so-
lution, it also uses the state prediction of the previous time instant to approximate the state
sequence at the current time instant. This strategy could achieve a good global performance
in some cases, but it reduces the flexibility and increases the communication load since
each subsystem-based MPC should communicate with all other subsystems. In an effort
to achieve a trade off between the global performance of the entire system and the compu-
tational burden, recently, an intuitively appealing strategy is proposed in [34, 32, 36, 16],
where each subsystem-based MPC only considers the cost of its own subsystem and those
of the subsystems it directly impacts on. Such a design can be referred to as Impacted-
region Cost Optimization based DMPC (ICO-DMPC). In particular, Ref. [34, ?] applies
this design idea to a metallurgy system and [32] explains why this coordination strategy
could improve the global performance. Numerical and practical experiments show that this
coordination strategy could obtain a performance close to that of a classical centralized M-
PC. In this kind of method, each subsystem based controller should communicate with its
neighbors and its neighbours’ neighbours.

It can be seen from above that, in existing methods, with the increasing of the coor-
dination degree, the performance of entire system becomes better and better, the network
connectivity becomes more and more complicity, and consequently the error tolerance and
high flexibility become weaker and weaker. To find a method which could improve the
global performance or coordination degree without any increasing of network connectivity
is still remain to be solved.

In this Chapter, an Coordinated Flexible Distributed Model Predictive Control (CF-
DMPC) is proposed and presented for distributed systems, where each subsystem-based
MPC adds a quadratic function of the impact of current subsystem’s input to its down stream
neighbours into its optimization index to increase the coordination degree. It do not need
any additional network connectivity comparing to the approach without this coordination
strategy. The consistency constraints, which limit the error between the state predicted at
the previous time instant, referred to as the presumed state, and the state predicted at the
current time instant within a prescribed bound, are designed and included in the optimiza-
tion problem of each subsystem-based MPC. These constraints can bound the error between
the presumed state and the predictive state of upstream neighbors and the error between the
predictive state of downstream neighbor calculated by current subsystem-based MPC and
that of the downstream neighbors themselves. And these constraints guarantee the feasi-
bility of each subsystem-based MPC. They also guarantee that the remaining part of the
solution at the previous time instant is a feasible solution. In the mean time, a stabilization
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Figure 1. An illustration of the structure of a distributed system and its distributed control
framework.

constraint and the dual mode predictive control [13, 23] strategy are adopted to result in a
stabilizing ICO-DMPC.

The remainder of this Chapter is organized as follows. Section 2. describes the problem
to be solved in this paper. Section 3. presents the design of the stabilizing CF-DMPC. The
feasibility of the proposed CF-DMPC and the stability of the resulting closed-loop system
are analyzed in Section 4.. Section 5. presents the simulation results to demonstrate the
effectiveness of the proposed DMPC algorithm. Finally, a brief conclusion to the paper is
drawn in Section 6..

2. Problem Description

2.1. Distributed Systems

A distributed system, as illustrated in Fig. 1, is composed of many interacting subsystem-
s, each of which is controlled by a subsystem-based controller, which in turn is able to
exchange information with other subsystem-based controllers.

Suppose that the distributed system S is composed ofm discrete-time linear subsystems
Si, i ∈ P = {1, 2, · · · ,m} and m controllers Ci, i ∈ P = {1, 2, · · · ,m}. Let the
subsystems interact with each other through their states. If subsystem Si is affected by
Sj , for any i ∈ P and j ∈ P , subsystem Si is said to be a downstream system of subsystem
Sj , and subsystem Sj is an upstream system of Si. Let P+i denote the set of the subscripts
of the upstream systems of Si, P−i is the set of the subscripts of the downstream systems
of Si. Then, subsystem Si can be expressed as{

xi,k+1 = Aiixi,k + Biiui,k +
∑

j∈P+i

Aijxj,k,

yi,k = Ciixi,k,
(1)

where xi ∈ Rnxi , ui ∈ Ui ⊂ Rnui and yi ∈ Rnyi are respectively the local state, input
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and output vectors, and Ui is the feasible set of the input ui, which is used to bound the
input according to the physical constraints on the actuators, the control requirements or the
characteristics of the plant. A non-zero matrix Aij , that is, j ∈ Vĭ, indicates that Si is
affected by Sj . In the concatenated vector form, the system dynamics can be written as{

xk+1 = Axk + Buk,
yk = Cxk,

(2)

where x = [xT
1 xT

2 · · · xT
m]T ∈ Rnx , u = [uT

1 uT
2 · · · uT

m]T ∈ Rnu and
y = [yT

1 yT
2 . . . uT

m]T ∈ Rny are respectively the concatenated state, control input and
output vectors of the overall system S, andA, B and C are constant matrices of appropriate
dimensions. Also, u ∈ U = U1 × U2 × · · · × Um.

The control objective is to stabilize the overall system S in an DMPC framework. Mean-
while, the achieved performance index of the overall system should be as close as possible
to the performance index achievable under a centralized MPC and the network connectivity
should not increase.

2.2. Existing Methods and Motivations

The works on DMPCcan be roughly divided in optimization-based frameworks which focus
on the solution of the optimization problems [21]. and control- based frameworks which
are concerned mostly with stability and control performance [5].

The control-based frameworks can be classified according to the information exchange
protocol needed (i.e non-iterative or iterative algorithms), and to the type of cost function
which is optimized. The non-iterative algorithms which only communicates once a control
period have faster computational speed comparing to that of iterative algorithm and the iter-
ative algorithms could obtains more excellent optimization performance than non-iterative
algorithms. The DMPC which accommodate same kind of cost function for subsystem-
based MPC can be solved either by iterative algorithm or non-iterative algorithm. Different
methods have different characteristics and are suitable for different control purposes. We
briefly review these methods as motivations for the problem we have just formulated and
its solution to be presented later in the paper.

1) Distributed algorithms where each subsystem-based controller minimizes the cost
function of its own subsystem were proposed in [4, 15],

Ji,k = ‖xi,k+N‖2Pi
+

N−1∑
l=0

(
‖xi,k+l‖2Qi

+ ‖ui,k+l‖2Ri

)
(3)

When computing the optimal solution, each local controller exchanges state estima-
tion with the neighboring subsystems to improve the performance of the local subsys-
tem. This method is simple and very convenient for implementation. An extension
of this stabilizing DMPC with input constraint for nonlinear continuous systems is
given in [10]. In addition [11] gives a design for linear systems, which could han-
dle both input and states constraints by using a fixed reference state trajectory with
moving widow to replace the state estimation in each update.
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2) To improve the global performance, distributed algorithms, where each local con-
troller minimizes a global cost function

J̃i,k =
∑
j∈P

Jj,k, (4)

were proposed in [28, 33, 26, 9, 31]. In this method, each subsystem-based MPC ex-
changes information (the estimation of the future state sequences of the subsystems)
with all other subsystems. And some iterative stabilizing designs are proposed which
take the advantages of the model of whole system is used in each subsystem-based
MPC. This strategy may result in a better performance but consumes much more
communication resources, in comparison with the method in described in 1).

3) To balance the performance, communication cost and the complexity of the DMPC
algorithm, the strategy that each subsystem-based controller only minimizes its own
cost function and those of the subsystems that its own subsystem directly impacts on
was recently proposed in [34, 32, 36, 16], that is

J̄i,k =
∑
j∈Pi

Jj,k, (5)

where Pi = {j : j ∈ P−i or j = i} is the set of subscripts of the downstream
subsystems of subsystem Si, that is the region impacted on by subsystem Si. The
resulting control algorithm is termed as an Impacted-region Cost Optimization based
DMPC, or ICO-DMPC. It could achieve a better performance than the first method,
and its communication burden is much less than the second method [1, 3].

Clearly, this coordination strategy as proposed in [34, 32] and described in 3) is a prefer-
able method to trade-off the communication burden and the global performance. However,
the DMPC under this coordination strategy the network conductivities is still increase, al-
though the global performance is dramatically increased with less increasing of network
connectivity. A method which could increase the coordination degree of DMPC without
increasing of network connectivity remains to be developed. The objective of this Chapter
is to develop and introduce such a DMPC design.

3. Coordinated Flexible Distributed Model Predictive Control
Formulation

In this Section, m separate optimal control problems, one for each subsystem, and the
Coordinated Flexible Distributed Model Predictive Control (CF-DMPC) which coordinates
the subsystem-based MPCs by adding a quadratic function of the impact of the current
subsystem’s input to its down stream neighbours into its optimization index is defined. In
every distributed optimal control problem, the same constant prediction horizon N , N > 1,
is used. And every distributed MPC law is updated globally synchronously. At each update,
every local MPC optimizes only for its own open-loop control sequence, given the current
states and the estimated inputs of the whole system.

To proceed, we need the following assumption,



Coordinated Flexible Distributed Model Predictive Control 7

Table 1. Notation
Notation Explanation
P the set of the subscripts of all subsystems

Pi
the set of the subscripts of all subsystems,
excluding S itself

+i the subscript denote all upstream neighbors of Si
−i the subscript denote all downstream neighbors of Si

ui,k+l−1|k
the optimal control sequence of Si
calculated by Ci at time k

x̂i,k+l|k
the presumed state sequence of Si
define by Ci at time k

ûi,k+l|k
the presumed input sequence of Si
define by Ci at time k

uf
i,k+l−1|k

the feasible control at time k+l-1 of Si
defined by Ci at time k

xf
i,k+l|k

the predictive feasible state sequence of Si
defined by Ci at time k

up
i,k+l−1|k

the predicted control at time k+l-1 of Si
defined by Ci at time k

xp
i,k+l|k

the predicted state sequence of Si
defined by Ci at time k

|| · ||P
refer to the P norm, P is any positive matrix,

and ||z||P =
√
xT
kPxk.

Assumption 1 For every subsystem Si, i ∈ P , there exists a decoupled static feedback
ui = Kixi such that Adi = Aii+BiiKi is Shur stable, and the closed-loop system xk+1 =
Acxk is asymptotically stable, where Ac = A + BK and K = diag{K1,K2, · · · ,Km}.

This assumption is usually used in the design of stabilizing DMPC, see [11, 10]. It
presumes that each subsystem is able to be stabilized by a decentralized control Kixi,
i ∈ V . and the decentralized control gain K based on LMI have been proposed in [29] for
continuous time systems. These techniques can be easily adapted to the discrete-time case
here considered.

We also define the necessary notation in Table 1.
Consider that the control law of current subsystem Si effects the performance of its

downstream neighboring subsystems Sj , j ∈ P−i, in the CF-DMPC, the performance of Sj
is added into the performance index of the MPC which control Si based on a approximation
of the updated state sequence of Sj . The approximated state sequence equals the assumed
state sequence of Sj pluses the impact caused by the change of control law of Si to the state
sequence of Sj . In this way, the coordination degree is expanded without any increasing of
the required network connectivity in solving each subsystem-based MPC.

Define that fi,k+l|k be the matching from ui,k:k+l−1|k to xi,k+l|k, and it can be deduced
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from equation (1) as

fi,k+l|k = xi,k+l|k

= Al
iixi,k +

l∑
h=1

Al−h
ii Biiui,k+h−1|k

+
∑

j∈P+i

l∑
h=1

Al−h
ii Aijxj,k+h−1|k (6)

Then, it have

∂fi,k+l|k

∂xj,k+h−1|k
= Al−h

ii Aij (7)

∂xi,k+l|k

∂ui,k+h−1|k
= Al−h

ii Bii (8)

The fi,k+l|k derivation of the uj,k+h−1|k becomes

∂fi,k+l|k

∂uj,k+h−1|k
=

l∑
p=h+1

∂fi,k+l|k

∂xj,k+p−1|k

∂xj,k+p−1|k

∂uj,k+h−1|k

=

l∑
p=h+1

Al−p
ii AijA

p−h
jj Bjj . (9)

Since the state and input sequences of downstream and upstream neighbors of Si is
unknown to the controller of Si, assume that the state and input sequences x̂i,k+l|k and
ûi,k+l|k be the presumed states and presumed input which are calculated in the previous
calculation, respectively. Add the estimation of the performance of the Sj , j ∈ P−i to the
cost function of the MPC for Si, then the optimization index of Si becomes

J̄i(k) =
N∑
l=1

(∥∥∥xp
i,k+l|k

∥∥∥2

Qi

+
∥∥ui,k+l−1|k

∥∥2

Ri

)

+
∑

j∈P−i

N∑
l=1

∥∥(x̂j,k+l|k + ωiSji,k+l|k
)∥∥2

Qj
+
∑

j∈P−i

N∑
l=1

∥∥ûi,k+l−1|k
∥∥2

Rj
(10)

where ωi is the weighting coefficients for improving the convergence when using iterative
algorithm, and

Sji,k+l|k =
l∑

h=1

l∑
p=h+1

Al−p
jj AjiA

p−h
ii Bii(ui,k+h−1|k − ûi,k+h−1|k)

h = 1, 2, . . . , l.

(11)

where Qi = QT
i > 0, Ri = RT

i > 0 and Pj = PT
j > 0. The matrix Pi is chosen to

satisfy the Lyapunov equation

AT
diPiAdi −Pi = −Q̂i,
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where Q̂i = Qi + KT
i RiKi. Denote

P = diag{P1,P2, · · · ,Pm},
Q = diag{Q1,Q2, . . . ,Qm},
R = diag{R1,R2, · · · ,Rm},
Ad = diag{Ad1,Ad2, · · · ,Adm}.

Then, it follows that
AT

dPAd −P = −Q̂,

where Q̂ = Q + KTRK > 0.
Since every subsystem-based controller is updated synchronously, the state and control

sequences of other subsystems are unknown to subsystem Si. Thus, at the time instant k,
the presumed state sequence x̂j,k:k+N |k of Sj are used in the predictive model of the MPC
in Si , which is given as

xp
i,k+l|k = Al

iix
p
i,k +

l∑
h=1

Al−h
ii Biiui,k+h−1|k

+
∑
j∈Pu

i

l∑
h=1

Al−h
ii Aijx̂j,k+h−1|k (12)

Given xp
i,k|k = xi(k|k), the presumed control sequence for subsystem Si is given by

ûi,k+l−1|k =

{
up
i,k+l−1|k−1, l = 1, 2, · · · , N − 1,

Kix
p
i,k+N−1|k−1, l = N

(13)

Set each presumed state sequence x̂i to be the remainder of the sequence predicted at the
previous time instant k − 1, concatenated with the closed-loop response under the state
feedback control ûi,k+l−1|k = Kjx

p
i,k+N−1|k−1, that is that is x̂i,k+l−1|k = xp

k+l−1|k−1, l = 1, 2, · · · , N,
x̂i,k+N+1−1|k = Adix

p
i,k+N−1|k−1 +

∑
j∈P+i

Aijx
p
j,k+N−1|k−1

(14)

In MPC systems, it is an important proposition to focus on the systems sequence feasi-
bility and the stability. The same things happen in the distributed MPC systems. To enlarge
the feasible region, a terminal state constraint is included in each subsystem-based MPC,
which guarantees that the terminal controllers are stabilizing inside a terminal set. To define
this terminal state set, we need to make an assumption and establish a technical lemma.

Assumption 2 The block-diagonal matrix Ad = diag{Ad1, Ad2, . . . ,Adm} and the off-
diagonal matrix Ao = Ac −Ad satisfy the following inequality

AT
o PAo + AT

o PAd + AT
dPAo < Q̂/2.
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It along with Assumption 1, help with the design of the terminal set. This assumption
quantifies the coupling between subsystems which is sufficiently weak to be controlled by
the algorithm designed here.

Lemma 3..1 Under Assumptions 1 and 2, for any positive scalar c the set

Ω(c) = {x ∈ Rnx : ‖x‖P ≤ c}

is a positive invariant region of attraction for the closed-loop system xk+1 = Acxk. Addi-
tionally, there exists a small enough positive scalar ε such that Kx is in the feasible input
set U ⊂ Rnu for all x ∈ Ω(ε).

Proof : Consider the function V (k) = ‖xk‖2P. The time difference of V (k) along the
trajectories of the closed-loop system xk+1 = Acxk can be evaluated as

∆Vk = xT
kA

T
c PAcxk − xT

kPxk

= xT
k (AT

dPAd −P + AT
o PAo + AT

o PAd + AT
dPAo)xk

≤ −xT
k Q̂xk +

1

2
xT
k Q̂xk

≤ 0,

which holds for all x(k) ∈ Ω(c) \ {0}. This implies that all trajectories of the closed-loop
system that starts inside Ω(c) will remain inside and converge to the origin.

The existence of an ε > 0 such that Kx ∈ U for all x ∈ Ω(ε) follows from the fact that
P is positive definite, which implies that the set Ω(ε) shrinks to the origin as ε decreases to
zero. This completes the proof. �

In the optimization problem of each subsystem-based MPC, the terminal state constraint
set for each Si can then be set to be

Ωi(ε) =
{
xi ∈ Rnxi : ‖xi‖Pi

≤ ε/
√
m
}
.

Clearly, if x ∈ Ω1(ε)×· · ·×Ωm(ε), then the decoupled controllers will stabilize the system
at the origin, since

‖xi‖2Pi
≤ ε2

m
, ∀i ∈ P,

implies that ∑
i∈P
‖xi‖2Pi

≤ ε2,

which in turn implies that x ∈ Ω(ε). Suppose that at some time k0, xi,k0 ∈ Ωi(ε) for every
subsystem. Then, by Lemma 3..1, stabilization can be achieved if every Ci, i ∈ P , employs
its decoupled static feedback controller Kixi,k after time instant k0.

Thus, the objective of each subsystem-based MPC law is to drive the state of each
subsystem Si to the set Ωi(ε). Once all subsystems have reached these sets, they switch to
their decoupled controllers for stabilization. Such switching from an MPC law to a terminal
controller once the state reaches a suitable neighborhood of the origin is referred to as the
dual-mode MPC [23, 13]. For this reason, the DMPC algorithm we propose in this paper is
a dual-mode DMPC algorithm.

In what follows, we formulate the optimization problem for each subsystem-based M-
PC.
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Problem 1 Consider subsystem Si. Let ε > 0 be as specified in Lemma 3..1. Let the update
time be k ≥ 1. Given xi,k, bfx̂j,k+l|k, l = 1, 2, . . . , N , ∀j ∈ P+i, find the control sequence
ui,k+l|k : {0, 1, · · · , N − 1} → Ui that minimizes

J̄i(k) =
N∑
l=1

(∥∥∥xp
i,k+l|k

∥∥∥2

Qi

+
∥∥ui,k+l−1|k

∥∥2

Ri

)

+
∑

j∈P−i

N∑
l=1

∥∥x̂j,k+l|k + ωiSji,k+l|k
∥∥2

Qj
+
∑

j∈P−i

N∑
l=1

∥∥ûi,k+l−1|k
∥∥2

Rj
(15)

Subject to the constraints:

(12), (16)∑l

s=1
αl−s||xp

i,k+s|k − x̂i,k+s|k||2 ≤
ξκε

2
√
mm1

, l = 1, 2, . . . , N − 1 (17)∥∥∥xp
i,k+N |k − x̂i,k+N |k

∥∥∥
Pi

≤ κε

2
√
m
, (18)∥∥∥xf

i,k+l|k

∥∥∥
Pi

≤
∥∥∥xp

i,k+l|k

∥∥∥
Pi

+
ε

µN
√
m
, l = 1, 2, · · · , N, (19)

ui,k+l|k ∈ Ui, l = 0, 1, . . . , N − 1, (20)

xp
i,k+N |k ∈ Ωi(ε/2) (21)

In the constraints above,

m1 = max
i∈P
{number of elements in P+i} , (22)

αl = max
i∈P

max
j∈Pi

{
λ

1
2
max

((
Al

iiAij

)T
PjA

l
iiAij

)}
, l = 0, 1, · · · , N − 1, (23)

The constant 0 < κ < 1, 0 < ξ ≤ 1 are design parameters whose values will be chosen in
the sequel. Both (17) and (18) are referred to as the consistency constraints, which require
that each predictive sequence and control variables remain close to their presumed values.
These constraints are keys to proving that xf

i is a feasible state sequence at each update.
Equation (19) will be utilized to prove that the CF-DMPC algorithm is stabilizing,

where µ > 0 is a design parameter whose value will be specified later. xf
i,k+l|k is a feasible

state sequence, and equals to the solution of (12) under the initial state of xi,k, the feasible
control sequence uf

i,k+l−1|k is defined by

uf
i,k+l−1|k =

{
up
i,k+l−1|k−1, l = 1, 2, · · · , N − 1,

Kix
f
i,k+N−1|k, l = N.

(24)

It should be noticed that the terminal constraint in each optimal control problem is
Ωi(ε/2), although Lemma 3..1 ensures that the larger Ωi(ε) suffices for the feasibility of
the terminal controllers. In the analysis presented in the next section, it will be shown that
tightening the terminal set in this way is required to guarantee the feasibility properties.

Before stating the CF-DMPC algorithm, an assumption is made to facilitate the initial-
ization phase.
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Assumption 3 At initial time k0, there exists a feasible control ui,k0+l ∈ Ui, l ∈
{1, . . . , N}, for each Si, such that the solution to the full system xl+1+k0 = Axl+k0 +
Bul+k0 , denoted x̂·|k0,i, satisfies x̂N+k0|k0,i ∈ Ω(αε) and results in a bounded cost J̄i,k0 .

Remark 3..1 Assumption 3 bypasses the difficult task of actually constructing an initially
feasible solution in a distributed way. In fact, finding an initially feasible solution for many
optimization problems is often a primary obstacle, whether or not such problems are used
in a control setting. As such, many centralized implementations of MPC also assume that
an initially feasible solution is available [23, 20]. Recent methods for characterizing the set
of initially feasible solutions are presented in [22]. One possible way to obtain an initially
feasible solution can be to solve the corresponding centralized MPC solution at the initial
time instant.

The dual-mode FC-MPC law for any Si, which communicates once every update, is as
follows.

Algorithm 1 (CF-DMPC Algorithm)
Step 1: Initialization at time k0.

• Initialize xk0 , ui,k0+l−1|k0 , l = 1, 2, . . . , N . to satisfy assumption 3

• At time k0, if xk0 ∈ Ω(ε), then apply the terminal controller ui,k = Kixi,k, for all
k ≥ k0; Else

• Compute x̂i,k0+l+1|k0+1 according to (12) and transmit x̂i,k0+l+1|k0+1 to Sj , J ∈
P−i;

Step 2: Communicating at time k, k > k0.

• Measure xi,k, transmit xi,k, x̂i,k+l+1|k, to Sj , j ∈ P−i, and receive xj,k, x̂j,k from
Sj , j ∈ P+i;

Step 3: Update control law at time k.

• If xk ∈ Ω(ε), then apply the terminal controller ui,k = Kixi,k; Else

• Solve Problem 1 for ui,k+l−1|k and apply ui,k|k to Si;

• Compute x̂i,k+l+1|k+1 according to (12) and transmit x̂i,k+l+1|k+1 to Sj , J ∈ P−i;

Step 4: Update control at time k + 1.

• Let k + 1→ k, repeat Step 2.

Algorithm 1 presumes that all local controllers Ci, i ∈ P , have access to the full state
xk. This requirement results solely from the use of the dual-mode control, in which the
switching occurs synchronously only when xk ∈ Ω(ε), with Ω(ε) being as defined in
Lemma 3..1. In the next section, it is will be shown that the CF-DMPC policy drives the
state xk+l to Ω(ε) in a finite number of updates. As a result, if Ωi(ε) is chosen sufficiently
small, then MPC can be employed for all time without switching to a terminal controller,
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eliminating the need of the local controllers to access the full state. Of course, in this case,
instead of asymptotic stability at the origin, we can only drive the state toward the small set
Ω(ε).

The analysis in the next section shows that the CF-DMPC algorithm is feasible at every
update and is stabilizing.

4. Analysis

In this section, feasibility is analyzed in the first subsection, followed by stability analysis
in the second subsection.

4.1. Feasibility

The main result of this section is that, provided that an initially feasible solution is available
and Assumption 3 holds true, for any Si and at any time k ≥ 1, up

i,·|k = uf
i,·|k is a feasible

control solution to Problem 1.
To establish this feasibility result, we will show that, for any Si and at any update

k ≥ 1, the control and state pair (uf
i,·|k,x

f
i,·|k) are a feasible solution to Problem 1 which

satisfy the consistency constraints (17),(18), the control constraint (20) and the terminal
state constraint (21).

Fig. 2 shows the discrepancy between the presumed state sequence
{x̂ik+1|k, x̂i,k+2|k, · · · } and the predicted state sequence {xf

i,k+1|k,x
f
i,k+2|k, · · · },

j ∈ Pi, and the relationships between these sequences and the terminal sets Ωj(ε),
Ωj(ε/2) and Ωj(ε

′/2), where 0 < ε′ = (1 − κ)ε < ε. To ensure feasibility, parametric
conditions must be established under which x̂i,k+N |k and xf

i,k+N |k are within the indicated
ellipsoids at the time instant k and x̂i,k+s|k and xf

i,k+s|k are sufficiently close to each other
over the entire time interval [k + 1, k +N ].

( )i 
( )i 

( )i  

, 1i kx 

,i kx

f
, |i k l kx 

, | 1ˆi k l kx  

k N

k N

i

Figure 2. Schematic of the discrepancy among a feasible state sequence, the presumed state
sequence and the predictive sequence.

Lemma 4..1 identifies sufficient conditions that ensure x̂i,k+N |k ∈ Ωi(ε
′/2), where ε′ =

(1− κ)ε. Lemma 4..2 identifies sufficient conditions that ensure ‖xf
i,l+k|k − x̂i,s+k|k‖Pj ≤
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κε/(2
√
m) for all i ∈ P . Lemma 4..3 establishes that the control constraint is satisfied.

Finally, Theorem 4..1 combines the results in Lemmas 4..1-4..3 to arrive at the conclusion
that, for any i ∈ P , the control and state pair (uf

i,·|k,x
f
i,·|k) are a feasible solution to Problem

1 at any update k ≥ 1.

Lemma 4..1 Suppose that Assumptions 1-3 hold and xk0 ∈ X . For any k ≥ 0, if Problem
1 has a solution at time k − 1 and x̂i,k+N−1|k−1 ∈ Ωj(ε/2) for any j ∈ Pi, i ∈ P , then

x̂i,k+N−1|k ∈ Ωj(ε/2)

and
x̂i,k+N |k ∈ Ωj(ε

′/2),

provided that Q̂j and Pj satisfy
max
i∈P

(ρi) ≤ 1− κ (25)

and ε′ = (1− κ)ε,

ρ = λmax

√(
Q̂iP

−1
i

)T
Q̂iP

−1
i

Proof: Since Problem 1 has a solution at time k − 1 , by construction (13) and (14), it
has ∥∥x̂i,k+N−1|k

∥∥
Pj

=
∥∥∥xp

i,k+N−1|k−1

∥∥∥
Pi

≤ ε

2
√
m

(26)

In addition, since

x̂i,k+N |k = Adix
p
i,k+N−1|k−1 +

∑
j∈P+i

Aijx
p
j,k+N−1|k−1

= Adix̂i,k+N−1|k +
∑

j∈P+i

Aijx̂j,k+N−1|k (27)

It has ∥∥x̂i,k+N |k
∥∥
Pi

=

∥∥∥∥∥∥Adix̂i,k+N−1|k +
∑

j∈P+i

Aijx̂j,k+N−1|k

∥∥∥∥∥∥
Pi

(28)

Consider Assumption 2, AT
o PAo + AT

o PAd + AT
dPAo < Q̂/2

Thus if , then∥∥x̂i,k+N |k
∥∥
Pi
≤

∥∥x̂i,k+N−1|k
∥∥
Q̂/2

≤ λmax

√(
Q̂iP

−1
i

)T
Q̂iP

−1
i

∥∥x̂i,k+N−1|k
∥∥
Pi

(29)

≤ (1− κ)
ε

2
√
m

This completes the proof of Lemma 4..1 �



Coordinated Flexible Distributed Model Predictive Control 15

Lemma 4..2 Suppose that Assumptions 1-3 hold and x(k0) ∈ X . For any k ≥ 0, if Prob-
lem 1 has a solution at every update time l, l = 1, 2, · · · , k − 1, then∥∥∥xf

i,k+l|k − x̂i,k+l|k

∥∥∥
Pi

≤ κε

2
√
m
, (30)

for all i ∈ Pi and all l = 1, 2, · · · , N , provided that (25) and the following parametric
condition hold √

m2

ξλmin(P )

N−2∑
l=0

αl ≤ 1, (31)

where αl is as defined in (23). Furthermore, the feasible control uf
i,k+s|k and the feasible

state xf
i,k+l|k satisfy constraints (17)-(18).

Proof : We will prove (30) first. Since a solution exists at update time 1, 2, . . . , k − 1,
according to (12), (13) and (24), for any s = 1, 2, · · · , N − 1, the feasible state is given by

xf
i,k+l|k = Al

iix
f
i,k|k +

l∑
h=1

Al−h
ii Biiu

f
i,k+l|k +

∑
j∈P+i

l∑
h=1

Al−h
ii Aijx̂j,k+h−1|k

= Al
ii

Al
iixi,k−1|k−1 + Biiui,k−1|k−1 +

∑
j∈P+i

Aijxj,k−1|k−1

 (32)

+

l∑
h=1

Al−h
ii Biiûi,k+l|k +

∑
j∈P+i

l∑
h=1

Al−h
ii Aijx

p
j,k+h−1|k−1

and the presumed state is

x̂i,k+l|k = Al
iixi,k|k−1 +

l∑
h=1

Al−h
ii Biiui,k+l|k−1 +

∑
j∈P+i

l∑
h=1

Al−h
ii Aijx̂j,k+h−1|k−1

= Al
ii

Al
iixi,k−1|k−1 + Biiui,k−1|k−1 +

∑
j∈P+i

Aijx̂j,k−1|k−1

 (33)

+

l∑
h=1

Al−h
ii Biiûi,k+l|k +

∑
j∈P+i

l∑
h=1

Al−h
ii Aijx̂j,k+h−1|k−1

Subtracting (34) from (33), and from the definition of (23) we obtain the discrepancy be-
tween the feasible state sequence and the presumed state sequence as∥∥∥xf

i,k+l|k − x̂i,k+l|k

∥∥∥
Pi

=

∥∥∥∥∥∥
∑

j∈P+i

l∑
h=1

Al−h
ii Aij

(
xp
i,k+h−1|k−1 − x̂j,k+h−1|k−1

)∥∥∥∥∥∥
Pi

≤
∑

j∈P+i

l∑
h=1

Al−h
ii Aij

∥∥∥xp
i,k+h−1|k−1 − x̂j,k+h−1|k−1

∥∥∥
Pi

(34)

≤
l∑

s=1

αl−s

∥∥∥xp
i,k+s−1|k−1 − x̂i,k+s−1|k−1

∥∥∥
2
.
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Let Sr be the subsystem which maximizes

l∑
h=1

αl−h

∥∥∥xp
i,k−1+h|k−1 − x̂i,k−1+h|k−1

∥∥∥
2
, i ∈ P (35)

Then, the following equation can be deduced from (35)

∥∥∥xf
j,k+l|k − x̂j,k+l|k

∥∥∥
Pi

≤
√
m1

l∑
h=1

αl−h

∥∥∥xp
g,k+h−1|k−1 − x̂g,k+h−1|k−1

∥∥∥
2

(36)

Since xp
i,l|k−1 satisfy constraints (17) for all times l = 1, 2, . . . , k−1, the following equation

can be deduced ∥∥∥xf
i,k+l|k − x̂i,k+l|k

∥∥∥
Pi

≤ (1− ξ)(1− κ)ε

2
√
m

+
ξ(1− κ)ε

2
√
m

(37)

=
κε

2
√
m
.

Thus, (30) holds for all l = 1, 2, . . . , N − 1.
When l = N , it has

xf
i,k+N |k = Ad,ix

f
i,k+N |k +

∑
j∈P+i

Aijx̂j,k+N−1|k (38)

x̂i,k+N |k = Ad,ix̂i,k+N−1|k +
∑

j∈P+i

Aijx̂j,k+N−1|kP (39)

From the subtraction of the two equations, then, the discrepancy between the feasible state
xf
i,(k+N) and the presumed state x̂i,(k+N) is

xf
i,k+N |k − x̂i,k+N |k = Ad,i

(
xf
i,k+N−1|k − x̂i,k+N−1|k

)
(40)

Consequently, (30) holds for all l = 1, 2, . . . , N .
In what follows we will prove that the feasible state xf

i,(k+l) satisfy constraints (17)(18)
when (30) holds.

When l = 1, 2, . . . , N − 1, substitute xf
i,k+l|k in the constraint (17) with considering

(31), we can get

l∑
h=1

αl−h

∥∥∥xf
i,k+h|k − x̂i,k+h|k

∥∥∥
2

≤ 1

λmin(Pi)

s∑
l=1

αl−h

∥∥∥xf
i,k+h|k − x̂i,k+h|k

∥∥∥
Pi

(41)

≤ 1

λmin(P)

l∑
h=1

αl−h

√
m1

ξ

ξκε

2
√
mm1
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Thus, when
√
m1

ξλmin(P)

l∑
h=1

αl−h ≤ 1,

state xf
i,k+l|k, l = 1, 2, . . . , N − 1, satisfy constraint constraint (17).

Finally, when l = N , ∥∥∥xf
i,k+N |k − x̂i,k+N |k

∥∥∥
Pi

≤ κε

2
√
m
, (42)

which shows constraint (18) is satisfied. The proof is completed. �

In what follows we establish that, at time k, if the conditions (25),(30) and (31) are
satisfied, then uf

i,k+l−1|k, l = 1, 2, . . . , N , is feasible solution of Problem 1.

Lemma 4..3 Suppose that Assumptions 1-3 hold, xk0 ∈ Rnx , and conditions (25) and
(31) are satisfied. For any k ≥ 0, if Problem 1 has a solution at every update time t,
t = 1, 2, · · · , k − 1, then uf

i,k+l|k ∈ U for all l = 1, 2, · · · , N − 1.

Proof: Since Problem 1 has a feasible solution at t = 1, 2, · · · , k− 1, and uf
i,k+s−1|k =

up
i,k+s−1|k−1 for all l = 1, 2, · · · , N − 1, we only need to show that uf

i,k+N−1|k ∈ U .
Since ε has been chosen to satisfy the conditions of Lemma 3..1, Kixi ∈ U for all

i ∈ P when x ∈ Ω(ε). Consequently, a sufficient condition for uf
i,k+N−1|k ∈ U is that

xf
i,k+N−1|k ∈ Ω(ε).

In view of Lemmas 4..1 and 4..2, using the triangle inequality, we have

‖xf
i,k+N−1|k‖Pi

≤
∥∥∥xf

i,k+N−1|k − x̂i,k+N−1|k

∥∥∥
Pi

+
∥∥x̂i,k+N−1|k

∥∥
Pi

≤ ε

2(q + 1)
√
m

+
ε

2
√
m

≤ ε√
m
,

that is, xf
i,k+N |k ∈ Ωi(ε). This concludes the proof. �

Lemma 4..4 Suppose that Assumptions 1 and 3 hold, xk0 ∈ X , and the conditions (30)
and (31) are satisfied. For any k ≥ 0, if Problem 1 has a solution at every update time t,
t = 0, . . . , k − 1, then the terminal state constraint xf

i,k+N |k ∈ Ω (ε/2) is hold, for any
i ∈ P .

Proof : Since there is a solution for Problem 1 at updates t = 1, . . . , k− 1, Lemma 4..1-4..3
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can be invoked. Using the triangle inequality, it has

‖xf
i,k+N |k‖Pi

≤ ‖xf
i,k+N |k − x̂i,k+N |k−1‖Pi + ‖x̂i,k+N |k−1,i‖Pi (43)

≤ κε

2
√
m

+
(1− κ)ε

2
√
m

=
ε

2
√
m

for each i ∈ P . This shows that the terminal state constraint is satisfied. This completes the
proof. �

Theorem 4..1 Suppose that Assumptions 1-3 hold, x(k0) ∈ Rnx and constraints (17),(18)
and (20) are satisfied at k0. Then, for every i ∈ P , the control uf

i,·|k and state xf
i,·|k,

respectively defined by (24), are a feasible solution of Problem 1 at every update k ≥ 1.

Proof : We will prove the theorem by induction.
First, consider the case of k = 1. The state sequence xp

i,·|1 = xf
i,·|1 trivially satisfies the

dynamic equation (12), the stability constraint (19) and the consistency constraints (17)-
(18).

Observe that
x̂i,1|1 = xp

i,1|0 = xf
i,1|1 = xi,1, i ∈ P,

and that
xf
i,1+l|1 = xp

i,1+l|0, l = 1, 2, · · · , N − 1.

Thus, xf
i,N |1 ∈ Ωi(ε/2). By the invariance of Ω(ε) under the terminal controller and the

conditions in Lemma 3..1, it follows that the terminal state and control constraints are also
satisfied. This completes the proof of the case of k = 1.

Now suppose that up
i,·|l = uf

i,·|l is a feasible solution for l = 1, 2, · · · , k − 1. We will

show that uf
i,·|k is a feasible solution at update k.

As before, the consistency constraint (17) is trivially satisfied, and uf
i,·|k is the corre-

sponding state sequence that satisfies the dynamic equation. Since there is a solution for
Problem 1 at updates l = 1, 2, · · · , k − 1, Lemmas 4..1-4..3 can be invoked. Lemma 4..3
guarantees control constraint feasibility. Lemma 4..4 shows that the terminal state con-
straint is satisfied and the proof of Theorem 4..1 is completed. �

4.2. Stability

The stability of the closed-loop system is analyzed in this subsection.

Theorem 4..2 Suppose that Assumptions 1-3 hold, x(k0) ∈ Rnx , constraints (17)-(19) and
(20) are satisfied, and the following parametric condition holds

κ
N − 1

2
+

1

µ
<

1

2
. (44)

Then, by application of Algorithm 1, the closed-loop system (2) is asymptotically stable at
the origin.
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Proof: By Algorithm 1 and Lemma 3..1, when x(k) enters Ω(ε), the terminal con-
trollers take over to keep it in there and stabilize the system at the origin. Therefore, it
remains to show that if x(0) ∈ X \ Ω(ε), then by the application of Algorithm 1, the state
of system (2) is driven to the set Ω(ε) in finite time.

Define the non-negative function for S

Vk =
∑N

l=1
‖xp

k+l|k‖P.

In what follows, we will show that, for any k ≥ 0, if xk ∈ X \ Ω(ε), then there exists a
constant η ∈ (0,∞) such that Vk ≤ Vk−1 − η. Constraint (19) implies that∥∥∥xp

k+l|k

∥∥∥
P
≤
∥∥∥xf

k+l|k

∥∥∥
P

+
ε

µN
.

Therefore,
Vk ≤

∑N

l=1

∥∥∥xf
k+l|k

∥∥∥
P

+
ε

µ
.

Subtracting Vk−1 from Vk and using xp
k+l|k−1 = x̂k+l|k, l = 1, 2, · · · , N − 1, gives

Vk − Vk−1

≤ −
∥∥∥xp

k|k−1

∥∥∥
P

+
ε

µ
+
∥∥∥xf

k+N |k

∥∥∥
P

+
N−1∑
l=1

(∥∥∥xf
k+l|k

∥∥∥
P
−
∥∥x̂k+l|k

∥∥
P

)
. (45)

Assuming xk ∈ X \ Ω(ε) yields ∥∥∥xp
k|k−1

∥∥∥
P
> ε. (46)

Also, by Theorem 4..1 we have ∥∥∥xf
k+N |k)

∥∥∥
P
≤ ε/2, (47)

and by Lemma 4..2, we have

N−1∑
l=1

(∥∥∥xf(k + l|k)
∥∥∥
P
−
∥∥x̂k+l|k

∥∥
P

)
≤ (N − 1)κε

2
. (48)

Using (46)-(48) in (45) then yields

Vk − Vk−1 < ε

(
−1 +

(N − 1)κ

2
+

1

2
+

1

µ

)
, (49)

which, in view of (44), implies that Vk−Vk−1 < 0. Thus, for any k ≥ 0, if xk ∈ X \Ω(ε),
there is a constant η ∈ (0,∞) such that Vk ≤ Vk−1 − η. It then follows that there exists a
finite time k′ such that xk′ ∈ Ω(ε). This concludes the proof. �

We have now established the feasibility the CF-DMPC and the stability of the resulting
closed-loop system. That is, if an initially feasible solution could be found, subsequent
feasibility of the algorithm is guaranteed at every update, and the resulting closed-loop
system is asymptotically stable at the origin.
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5. Simulation

The multi-zones building temperature regulation systems are a class of typical spatially dis-
tributed systems, as shown in Fig. 3, which are composed of many physically interacted
subsystems (rooms or zones) labeled with S1,S2, . . . , respectively. The thermal influences
between rooms of the same building occur through internal walls (the internal walls iso-
lation is weak) and/or door openings. A thermal-meter and a heater (or air condition) are
installed in each zone, which is used to measure and adjust the temperature of the multi-
zones building.

For simplicity, the 7-zones building is taken as example. The relationship among these
seven zones is also shown in Fig. 3., where zone S1 is impacted by zone S2 and zone S7;
zone S2 is impacted by zone S1, S3 and zone S7; zone S3 is impacted by zone S2, S4 and
zone S7; zone S4 is impacted by zone S3, S5 and zone S7; zone S5 is impacted by zone S4,
S6 and zone S7; zone S6 is impacted by zone S5 and zone S7; zone S4 is impacted by all
the other zones.

Let Ui be defined to reflect both the constraint on the input ui ∈ [ui,L, ui,U] and the
constraint on the increment of the input ∆ui ∈ [∆ui,L,∆ui,U]. The models of these seven
subsystems are respectively given by

x1,k+1 = 0.574x1,k + 0.384u1,k + 0.029x2,k + 0.057x7,k

x2,k+1 = 0.535x2,k + 0.372u2,k + 0.054x1,k + 0.054x3,k

+0.054x7,k

x3,k+1 = 0.547x3,k + 0.376u3,k

+0.055x2,k + 0.055x4,k + 0.055x7,k

x4,k+1 = 0.606x4,k + 0.394u4,k

+0.061x3,k + 0.061x5,k + 0.061x7,k,

x5,k+1 = 0.681x5,k + 0.415u5,k

+0.068x4,k + 0.068x6,k + 0.068x7,k

x6,k+1 = 0.548x6,k + 0.376u6,k

+0.055x5,k + 0.055x7,k,

x7,k+1 = 0.716x7,k + 0.425u7,k + 0.018x1,k + 0.018x2,k

+0.018x3,k + 0.018x4,k + 0.018x5,k + 0.018x6,k.

For the purpose of comparison, the centralized MPC, the DMPC where each subsystem-
based MPC optimizes its own local cost [10], here we call it as local cost optimization based
DMPC (LCO-DMPC), and the propsed CF-DMPC are all applied to this system.

Some parameters of the controllers in proposed CF-DMPC are shown in Table 2. A-
mong these parameters, Pi is obtained by solving the Lyapnov function. The eigenvalue of
each closed-loop system under the feedback control shown in the table is 0.5. Set ε = 0.15,
and set the control horizon of all the controllers to be N = 10. Set the initial presumed
inputs and states, at time k0 = 0, be zeros.

In both the centralized MPC and the subsystem-based MPCs of the local cost optimiza-
tion based DMPC, the dual mode strategy is adopted, and set the parameters, the initial
states and the initial presumed inputs be the same as those used in CF-DMPC.
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Figure 3. The interaction relationship among subsystems.

Table 2. Parameters of CF-DMPC
Sub−
system

Ki Pi Qi Ri
∆ui,U
∆ui,L

S1 -0.44 5.38 4 0.2 ±1

S2 -0.34 5.36 4 0.2 ±1

S3 -0.37 5.37 4 0.2 ±1

S4 -0.52 5.40 4 0.2 ±1

S5 -0.68 5.46 4 0.2 ±1

S6 -0.37 5.37 4 0.2 ±1

S7 -0.76 5.49 4 0.2 ±1

The state responses and the inputs of the closed-loop system under the control of the
centralized MPC, CF-DMPC and LCO-DMPC are shown in Figs. 4. The shape of the s-
tate response curves under the control CF-DMPC are similar to those under the centralized
MPC. Under the CF-DMPC control design, when set point changed, there is no significant
overshooting, but some fluctuations exist in the trajectories of states of the interacting sub-
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Table 3. State square errors of the closed-loop system under the control of the centralized
MPC (CMPC), the LCO-DMPC and the CF-DMPC

Items CMPC CF-DMPC LCO-DMPC
S1 0.0109 0.1146 2.0891
S2 2.2038 3.0245 6.2892
S3 5.4350 6.9908 10.6391
S4 2.2480 3.2122 15.3015
S5 4.5307 5.6741 30.2392
S6 4.3403 5.4926 8.2768
S7 9.2132 11.0574 33.6902

Total 27.9819 35.5663 106.5251

systems. Under the LCO-DMPC control design, the states of all subsystems could converge
to set point, but there exists much larger overshooting comparing to those under the control
of FC-DMPC and centralized MPC, and there are larger amplitude in the fluctuating of state
than those under the control of CF-DMPC.

Table 3 shows the state square errors of the closed-loop system under the control of the
centralized MPC, the CF-DMPC and the local cost optimization based DMPC, respectively.
The total errors under the CF-DMPC is 7.5844 (27.1%) larger than that under the central-
ized MPC. The total errors resulting from the LCO-DMPC is 78.5432 (280.7%) larger than
that results from the centralized MPC. The performance of the CF-DMPC is significantly
better than that of the LCO-DMPC.

Table 4 shows the required network connectivity under the control of the centralized
MPC, the CF-DMPC and the LCO-DMPC, respectively. The required network connectivity
under the control of CF-DMPC equals to that under the control of LCO-DMPC and is much
less than that under the control of centralized MPC.

Table 4. Required network connectivity under the control of the centralized MPC (CMPC),
the LCO-DMPC and the CF-DMPC

Items CMPC CF-DMPC LCO-DMPC
S1 All 2,7 2,7
S2 All 1,3,7 1, 3,7
S3 All 2, 4,7 2, 4,7
S4 All 3,5,7 3,5,7
S5 All 4,6,7 4,6,7
S6 All 5,7 5,7
S7 All All All

From these simulation results, it can be seen that the proposed CF-DMPC is able to
steer the system states to the set point if there is a feasible solution at the initial states,
and it could obtain a better global performance than LCO-DMPC when the same network
connectivity provided. The global performance of entire closed-loop system is improved
without any weakening of the characteristics of good error tolerance and high flexibility of
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Figure 4. The evolution of the states under the centralized MPC, LCO-DMPC and CF-
DMPC.
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the whole control system.

6. Conclusion

In this paper, a Coordinated Flexible DMPC proposed for distributed system is develope-
d for dynamically coupled spatially distributed systems subject to decoupled input con-
straints. The proposed method could improve the global performance of entire closed-loop
system without any increasing of network connectivity. In addition, if an initially feasible
solution and a feed back control law Kix could be found, the subsequent feasibility of the
algorithm is guaranteed at every update, and the resulting closed-loop system is asymptot-
ically stable. The simulations illustrate that the performance of global system under the
control of proposed method is very close to that under the control of centralized MPC.
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